在2K视频源都还没达到全面普及程度的现在,厂商已经推出了5K显示器。VESA组织也及时发布了DisplayPort 1.3新标准,完美匹配5K分辨率,好像商量好了一样。于是就把上哪儿找5K视频这个问题留给了内容提供商。我们想起了印第安人有一句谚语:身体不要走得太快,让灵魂跟上来。但现在不行了,硬件和接口标准已经走得相当快,等不到内容和灵魂什么的跟上来,毕竟竞争太激烈了,抢占技术高地才能拓宽未来的生存空间。那么DisplayPort 1.3有什么让人兴奋的特性吗?
DisplayPort是由VESA(Video Electronics Standards Association,视频电子标准协会)在2006年5月提出的一种数字影音传输接口规范,旨在取代VGA、DVI等已经垂垂老矣的视频接口。毕竟VGA输出模拟信号早已无法满足高清和3D的需求,DVI又不利于接口扩展和兼容,而且它们共同的特点都是个头太大,用在小体积的移动设备上力不从心。显然DisplayPort接口的出发点和HDMI一致。但DisplayPort接口诞生的2006年,此时HDMI已经4岁。HDMI在索尼、松下等业界大腕儿的力推之下,通过PS3、蓝光播放器、高清电视等已经完成了产业布局,所以如果DisplayPort接口不拿出点真功夫是很难立足的。
DisplayPort接口也绝非浪得虚名。它是首个采用微封包数据传输(Micro-Packet Architecture)的接口标准,这种传输技术在以太网、USB和PCI Express中都有应用。DisplayPort将时钟信号嵌入数据包中,使得它以很少的引脚就能传输很大的数据量,并提供了良好的扩展性能而不用改变物理接口形态。DisplayPort可同时或单独传输音频和视频。视频信号中每个颜色通道可以有6到16位,音频路径可以有多达8通道24位192kHz的非压缩的PCM音频,或可以在音频流中封装压缩的音频格式。
DisplayPort由主链路、辅助信道和热插拔信号检测(HPD)三部分组成。其中主链路是一条单向、高带宽、低延迟的传输链路,用于传输未压缩的频率同步视频、音频串流;辅助通道是一对交流耦合差分线组成的双向半双工通道,可用来传输主链路用的设备管理和控制信号如VESA EDID(Extended Display Identification Data,扩展显示标识数据)、MCCS(VESA Monitor Control Command Set,显示器控制指令集)和DPMS(VESA Display Power Management Signaling,显示器电源管理信号),重要的是还可以用来传输USB信号。辅助通道在15米的传输距离上提供1Mb/s的传输速率;热插拔信号则实现了终端设备中断请求。
微封包架构有利于简化平板电视的接口设计
主链路由4条通道组成,每一条通道都是一对差分线,主链路可以使用其中1条、2条或者全部的通道,这意味着DisplayPort没有单独的时钟通道。DisplayPort的主链路采用的是8b/10b编码,时钟信号是从数据串流中撷取出来的。主链路上所有的视频、音频流都被封包化为微封包,这些微封包称为传输单元,每一个传输单元都由64个字符组成。如果被传输的数据串流小于64个字符,DisplayPort会自动将它补足为64个,于是数据完整性得到了大幅提升。而以HDMI为代表的传统接口均采用类似交换式传输方式,即视频以实时方式传输。相比之下,封包式传输只要与适当的带宽、流量管理配套,就能比交换式传输提供更多功能和更广的上升空间。事实上,主链路的每条通道在自时钟运行于162MHz、270MHz、540MHz上时,原始比特率为1.62Gb/s、2.7Gb/s、5.4Gb/s。按照8b/10b的80%的有效带宽计算,每个通道的有效数据传输速率是1.296Gb/s、2.16Gb/s、4.32Gb/s。对于DisplayPort 1.2而言,4条线路则可以实现高21.6Gb/s的传输速率。在这种高带宽的支持下,DisplayPort可以满足各种数据传输特别是视频应用的需求。任何色深、分辨率和画面刷新频率都可以自由转换。而HDMI带宽扩展能力有限,无法满足需要更高带宽和传输速度的PC接口,例如多联屏输出的需求。