与电磁感应方式相比,磁共振技术在距离上就有了一定的宽容度,它可以支持数厘米至数米的无线充电,使用上更加灵活。磁共振同样要使用两个规格完全匹配的线圈,一个线圈通电后产生磁场,另一个线圈因此共振、产生的电流就可以点亮灯泡或者给设备充电。除了距离较远外,磁共振方式还可以同时对多个设备进行充电,并且对设备的位置并没有严格的限制,使用灵活度在各项技术中居于榜首。在传输效率方面,磁共振方式可以达到40%~60%,虽然相对较低但也进入商用化没有任何问题。
富士通公司在2010年对磁共振系统进行展示,在演示中它成功地在15厘米距离内点亮两个灯泡,具备良好的实用价值。除了富士通外,长野日本无线、索尼、高通、WiTricity都采取这项技术来开发自己的无线充电方案,其中WiTricity的应用领域是为电动汽车无线充电。
日本村田制作所开发的“电场耦合”无线供电系统则属于少数派,隶属于这一体系的还包括日本的竹中工务店。电场耦合方式与“电磁感应”及“磁共振”方式都不同,它的传输媒介不是磁场而是电场。
这套系统包括一个送电侧和受电侧,前者包括两组电极、一个振荡器、一个放大器和一套升压电路:Passive电极主要起接地作用,Active电极则用于产生电场。而振荡器的作用则是将输入的直流电转变为交流电,放大器和升压电路则负责提升电压。例如接入为5V的适配器,经过振荡器、放大器和升压电路后就会产生一个1.5KV的高压电,驱使Active电极产生一个高压电场。而受电侧也与此对应,接收电极感应到高压电场,再经过降压电路及整流电路后、就产生了设备能实际使用的直流电压。目前,村田制作所已获得这种构造的技术专利。
相对于传统的电磁感应式,电场耦合方式有三大优点:充电时设备的位置具备一定的自由度;电极可以做得很薄、更易于嵌入;电极的温度不会显著上升,对嵌入也相当有利。首先在位置方面,虽然它的距离无法像磁共振那样能达到数米的长度,但在水平方向上也同样自由,用户将终端随意放在充电台上就能够正常充电。我们可以看到电场耦合与电磁感应的对比结果,电极或线圈间的错位用dz/D(中心点距离/直径)参数来表示,当该参数为0时,表示两者完全重合,此时能效处于高状态。当该参数为1时,表示两者完全不重合。我们可以看到,此时电场耦合方式只是降低了20%的能量输入,设备依然是可以正常充电,而电磁感应式稍有错误、能量效率就快速下降,错位超过0.5时就完全无法正常工作,因此,电磁感应式总是需要非常精确的位置匹配。
电场耦合方式的第二个特点是电极可以做到非常薄,比如它可以使用厚度仅有5微米的铜箔或者铝箔,此外对材料的形状、材料也都不要求,透明电极、薄膜电极都可以使用,除了四方形外,也可以做成其他任何非常规的形状。这些特性决定了电场耦合技术可以被很容易地整合到薄型要求高的智能手机产品中,这也是该技术相对于其他方案显著的优点。显而易见,若采用电场耦合技术,智能手机厂商在设计产品时就有很宽松的自由度,不会在充电模块设计上遭受制肘。
第三个优点就是电极部分的温度并不会上升——困扰无线充电技术的一个难题就是充电时温度较高,会导致接近电极或线圈的电池组受热劣化,进而影响电池的寿命。电场耦合方式则不存在这种困扰,电极部分的温度并不会上升,因此在内部设计方面不必太刻意。电极部分不发热主要得益于提高电压,如在充电时将电压提升到1.5kv左右,此时流过电极的电流强度只有区区数毫安,电极的发热量就可以控制得很理想。不过美中不足的是,送电模块和受电模块的电源电路仍然会产生一定的热量,一般会导致内部温度提升10~20℃左右,但电路系统可以被配置在较远的位置上,以避免对内部电池产生影响。
村田制作所目前已经成功地开发出5瓦和10瓦充电的产品,并致力于实现小型化,制作所计划从今年开始向市场投放小型产品,未来则朝着50瓦、100瓦等大功率产品的方向前进。
英特尔公司是微波谐振方式的拥护者,这项技术采用微波作为能量的传递信号,接收方接受到能量波以后,再经过共振电路和整流电路将其还原为设备可用的直流电。这种方式就相当于我们常用的Wi-Fi无线网络,发收双方都各自拥有一个专门的天线,所不同的是,这一次传递的不是信号而是电能量。微波的频率在300MHz~300GHz之间,波长则在毫米-分米-米级别,微波传输能量的能力非常强大,我们家庭中的微波炉即是用到它的热效应,而英特尔的微波无线充电技术,则是将微波能量转换回电信号。
微波谐振方式的缺点相当明显,就是能量是四面八方发散的,导致其能量利用效率低得出奇,如英特尔的这套方案,供应电力低至1瓦以下,乍一看起来实用性相当有限。而它的优点,则是位置高度灵活,只要将设备放在充电设备附近即可,对位置的要求很低,是符合自然的一种充电方式。我们可以看到,当设备收发双方完全重合时,电磁感应和微波谐振方式的能量效率都达到峰值,但电磁感应明显优胜。不过随着X-Y方向发生位移,电磁感应方式出现快速的衰减,而微波谐振则要平缓得多,即便位移较大也具有相当的可用性。
尽管能量和效率处于较低的水平上,乍看实用价值较为有限,但作为PC业的巨头,英特尔具有化腐朽为神奇的本领,而它的做法也相当巧妙:英特尔将超极本设计为无线充电的发送端,Atom Z平台手机作为接收端,这样只要手机放在超极本旁边,就能够在不知不觉中、连续不断地充电—相信在上班时,大多数用户都有将手机放在桌面上的习惯,此时充电工作就可以在后台开始了。即便英特尔所用的微波谐振方式只能充入很低的电量,但在长时间的充电下,智能手机产品的电力几乎将永不衰竭,至少从用户角度上看是这样,因为只要他携带着笔记本电脑、就根本不再需要关注充电问题。
无线充电技术被英特尔提升到战略性的高度,它可以起到同时推广超极本和“Atom Z”系列X86智能手机平台的目的——在智能手机平台,英特尔只能算是后来者,加上X86架构在功耗设计上的先天弱势,外界认为英特尔机会有限,难以对ARM构成挑战。但借助无线充电技术,英特尔的超极本和Atom Z平台都会对传统商务用户产生巨大的吸引力。